Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A new copper(II) basic sulfate: poly-[3-aminopyridinium μ_{3}-hydroxido-di-μ_{3}-sulfato-bis[aquacopper(II)]]

Nina Lah, ${ }^{\text {a* }}$ Ivan Leban ${ }^{\text {a }}$ and Gerald Giester ${ }^{\text {b }}$
${ }^{a}$ University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, SI-1000 Ljubljana, Slovenia, and ${ }^{\text {b }}$ University of Vienna, Institute for Mineralogy and Crystallography, Althanstrasse 14, A-1090 Vienna, Austria Correspondence e-mail: nina.lah@fkkt.uni-lj.si

Received 2 March 2007
Accepted 20 March 2007
Online 21 April 2007
The crystal structure of the title basic copper(II) sulfate, $\left\{\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right\}_{n}$, shows an unprecedented structural arrangement of two distinct copper centres. CuO_{6} and CuO_{5} polyhedra are linked through bridging hydroxide and sulfate anions to form negatively charged infinite chains propagated along the a axis. The negative charge is balanced by 3 -aminopyridinium cations that are held in the structure by extensive hydrogen bonding to the inorganic chains. Additionally, the cationic arrangement features $\pi-\pi$ stacking.

Comment

In the course of our studies of copper carboxylates with organic amines, we have investigated the CuSO_{4} /suberic acid/ 3 -aminopyridine system. Attempts to prepare a new polymeric copper(II) dicarboxylate failed. Instead, the synthesis yielded prismatic orange-green crystals which proved to be the title new $\mathrm{Cu}^{\mathrm{II}}$ basic sulfate species, $L^{+} \cdot\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$, (I) $\left(L^{+}\right.$is the 3 -aminopyridinium cation). At first glance, the stoichiometry is reminiscent of that of the mineral natrochalcite, $\mathrm{Na}^{+} \cdot\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$, from the tsumcorite

(I)
group minerals, but detailed structural analysis reveals a novel structural arrangement that cannot be related to any of the known minerals containing tetrahedral $\mathrm{XO}_{4}{ }^{2-}$ anions $(X=\mathrm{S}$, $\mathrm{Se}, \mathrm{Mo}, \mathrm{As}, \mathrm{P}$, etc.).

The basic building unit of (I) is composed of two distinct Cu centres, bridged by two bidentate sulfate groups and by the hydroxide anion (Fig. 1). Additionally, a water molecule is coordinated to each of the two independent Cu atoms. The dimeric $\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ unit bears a negative charge, which is balanced by one 3 -aminopyridinium cation per dimeric unit. Two dimeric units, related by an inversion centre, are further connected by a sulfate O atom and an OH^{-}anion to form a centrosymmetric tetranuclear entity (Fig. 2a). Negatively charged linear chains of tetramers are then generated by translation along [100] (Fig. 2b). Both sulfate anions thus connect three metal centres in a $\mu_{3}-O: O^{\prime}: O^{\prime \prime}$ binding mode. The shortest contact between Cu centres is observed for the two Cu 2 atoms related by an inversion centre $[\mathrm{Cu} 2 \cdots \mathrm{Cu} 2(-x,-y+1,-z+1)=3.0015$ (4) \AA] .

The crystallographically independent Cu atoms have distinct coordination environments. Atom Cu2 has a typical slightly distorted octahedral geometry of six O atoms (four belonging to sulfate groups, a water O atom and a hydroxide O atom). Atom Cu 1 is five-coordinated by three sulfate O atoms, a water O atom and a hydroxide O atom, thus forming a polyhedron that could be described as a distorted trigonal bipyramid rather than a distorted square pyramid [the parameter τ (Addison et al., 1984) has a value of 0.62]. A pair of octahedra, related by an inversion centre and sharing a common edge, are connected to the trigonal bipyramid through a corner common to all three polyhedra (the triply bridging OH^{-}group) and through the corners of sulfate tetrahedra, generating linear chains propagated along the a axis (Fig. 3a).

The 3 -aminopyridinium cations are arranged between the chains with the ring plane almost perpendicular to the [100] direction. The pyridine rings of neighbouring cations are alternately slipped with respect to each other, but a substantial

Figure 1
A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The coordination around the Cu atoms is completed by O atoms of symmetryrelated units. [Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y+1$, $-z+1$.]
overlap of the aromatic rings still exsists, so that the interaction can be considered as $\pi-\pi$ stacking. The plane-to-plane distance is $3.64 \AA$, whereas the centroid-to-centroid distance is

(a)

(b)

Figure 2
(a) The assembly of two dimeric units of (I) to form a centrosymmetric tetranuclear entity and (b) the connection of tetranuclear units into infinite chains.

(a)

(b)

Figure 3
(a) The connection of CuO_{6} octahedra (Cu 1) and CuO_{5} trigonal bipyramids (Cu2) through sulfate tetrahedra (S) into linear chains. (b) A packing diagram for (I), viewed along [100]. Note the $\pi-\pi$ stacking arrangement of the 3-aminopyridinium cations.
only slightly longer ($3.98 \AA$). There are a number of possible hydrogen-bond donors and acceptors, as illustrated by a rather complex hydrogen-bonding pattern, the details of which are listed in Table 2.

Taking the stoichiometry into account, the reported compound is closely related to the natrochalcite-type compounds $M^{+} \cdot\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4} / \mathrm{SeO}_{4}\right)_{2}\right]^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, with the tsumcorite parent structure $M^{\mathrm{I}} M^{\mathrm{II}}\left(\mathrm{XO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Tillmanns \& Gebert, 1973; Giester \& Zemann, 1987; Mihajlovic \& Effenberger, 2004, and references therein). However, the structures differ significantly. Natrochalcite contains six-coordinated Cu centres in a distorted octahedral environment. Pairs of octahedra are edge-connected to form chains, which are linked by sulfate tetrahedra to form $\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$sheets, interconnected by Na^{+}ions and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. There are several structural variations of the members of the parent tsumcorite type of compounds, although in all the reported structures, the $M^{\text {II }}$ metal is six-coordinated, whereas in the structure reported here, one of the Cu atoms is fivecoordinated. Trigonal-bipyramidal CuO_{5} coordination in minerals is rather rare. To the best of our knowledge, it has only been observed in the mineral dolerophanite, $\mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)$ (Effenberger, 1989). There is an additional distinct difference: all the compounds listed above contain two-dimensional layers that are further connected by monovalent cations and hydrogen bonds, while the title compound contains linear chains of $\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$composition. The organic 3-aminopyridinium cation lacks coordination ability and, through its size, apparently prevents closer contacts between the chains.

Experimental

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.10 \mathrm{~g}, 0.4 \mathrm{mmol})$ and suberic acid $(0.07 \mathrm{~g}, 0.4 \mathrm{mmol})$ were combined in water $(15 \mathrm{ml})$. The mixture was stirred and heated to boiling. The addition of 3 -aminopyridine $(0.19 \mathrm{~g}, 2.0 \mathrm{mmol})$ resulted in a green solution. Upon cooling to room temperature, a turquoise precipitate of unknown composition was formed. On standing at ambient temperature, orange-green single crystals of (I) appeared within three weeks. The crystals are extremely sensitive and decompose rapidly when removed from the solution.

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$V=1312.16(8) \AA^{3}$
$M_{r}=467.41$
Monoclinic, $P 2_{0} / c$
$a=7.4094$ (2) \AA
$b=12.6262(5) \AA$
$c=14.0648$ (5) \AA
$\beta=94.2600(10)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
5582 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.053$
$S=1.07$
2976 reflections
223 parameters
$Z=4$
Mo $K \alpha$ radiation
$\mu=3.62 \mathrm{~mm}^{-1}$
$T=150$ (1) K
$0.12 \times 0.12 \times 0.10 \mathrm{~mm}$

2976 independent reflections 2897 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.011$

[^0]Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{OW} 2$	$1.9355(16)$	$\mathrm{Cu} 2-\mathrm{O} 1$	$1.9475(13)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9422(13)$	$\mathrm{Cu} 2-\mathrm{O} 12$	$2.0821(13)$
$\mathrm{Cu} 1-\mathrm{O} 21$	$1.9771(13)$	$\mathrm{Cu} 2-\mathrm{O} 24$	$2.1877(13)$
$\mathrm{Cu} 1-\mathrm{O} 11$	$2.0843(13)$	$\mathrm{Cu} 2-\mathrm{O} 22^{\mathrm{ii}}$	$2.1975(13)$
$\mathrm{Cu} 1-\mathrm{O} 14^{\mathrm{i}}$	$2.1061(13)$	$\mathrm{Cu} 2-\mathrm{O} 1^{\mathrm{i}}$	$2.2097(13)$
$\mathrm{Cu} 2-\mathrm{OW3}$	$1.9288(13)$	$\mathrm{Cu} 2-\mathrm{Cu} 2^{\mathrm{ii}}$	$3.0015(4)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 24{ }^{\text {iii }}$	0.86	2.37	3.132 (2)	148
N11-H11B..O21	0.86	2.49	3.326 (3)	165
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{O} 13^{\text {iv }}$	0.86	2.64	3.122 (3)	117
$\mathrm{OW} 3-\mathrm{H} 1 A \cdots \mathrm{O} 23^{v}$	0.78 (3)	1.90 (3)	2.6697 (19)	174 (3)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 22^{\text {vi }}$	0.76 (3)	2.07 (3)	2.796 (2)	160 (3)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 11^{\text {i }}$	0.71 (3)	2.22 (3)	2.8616 (18)	152 (3)
$\mathrm{OW} 3-\mathrm{H} 1 B \cdots \mathrm{O} 13{ }^{\text {vii }}$	0.78 (3)	1.90 (3)	2.6657 (19)	168 (3)
$\mathrm{OW} 2-\mathrm{H} 2 A \cdots \mathrm{O} 13^{\text {iv }}$	0.81 (3)	1.83 (4)	2.637 (2)	176 (3)
$\mathrm{OW} 2-\mathrm{H} 2 B \cdots \mathrm{O} 23^{\text {viii }}$	0.67 (3)	2.09 (3)	2.739 (2)	165 (4)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (iii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $-x+1, y+\frac{1}{2}$, $-z+\frac{3}{2}$; (v) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (vi) $-x,-y+2,-z+1$; (vii) $x-1, y, z$; (viii) $x+1$, y, z.

Aromatic and amino group H atoms of the 3-apyH cation were placed in geometrically calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. All other H atoms were found in a difference Fourier map and refined freely, with $\mathrm{O}-\mathrm{H}$ distances ranging from 0.67 (3) to 0.81 (3) \AA and an $\mathrm{N}-\mathrm{H}$ distance of 0.76 (3) \AA.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The financial support of the Ministry of Higher Education, Science and Technology, Republic of Slovenia, through grant Nos. P1-175-103, X-2000 and SLO-AU-07/08 is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3034). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Effenberger, H. (1989). Z. Kristallogr. 188, 43-56.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Giester, G. \& Zemann, J. (1987). Z. Kristallogr. 179, 431-442.
Mihajlovic, T. \& Effenberger, H. (2004). Mineral. Mag. 68, 757-767.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tillmanns, E. \& Gebert, W. (1973). Acta Cryst. B29, 2789-2794.

[^0]: H atoms treated by a mixture of independent and constrained refinement
 $\Delta \rho_{\text {max }}=0.49 \mathrm{e}^{-3}$
 $\Delta \rho_{\text {min }}=-0.53 \mathrm{e}^{-3}$

